
KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION
MEETS DATABASES

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3,
39100 Bolzano, Italy

Tel: +39 04710 16000, fax: +39 04710 16009, http://www.inf.unibz.it/krdb/

KRDB Research Centre Technical Report:

Checking Query Completeness over
Incomplete Data

Simon Razniewski, Werner Nutt

Affiliation KRDB Research Centre for Knowledge and Data,
Free University of Bozen-Bolzano,
Via della Mostra 4, 39100 Bolzano, Italy

Corresponding author Simon Razniewski
simon.razniewski@stud-inf.unibz.it

Keywords data quality, metadata management, incomplete information
Number KRDB11-02
Date 02-03-11
URL http://www.inf.unibz.it/krdb/

c©KRDB Research Centre
This work may not be copied or reproduced in whole or part for any commer-
cial purpose. Permission to copy in whole or part without payment of fee is
granted for non-profit educational and research purposes provided that all such
whole or partial copies include the following: a notice that such copying is by
permission of the KRDB Research Centre, Free University of Bozen-Bolzano,
Italy; an acknowledgement of the authors and individual contributors to the
work; all applicable portions of this copyright notice. Copying, reproducing, or
republishing for any other purpose shall require a licence with payment of fee
to the KRDB Research Centre.

Abstract

Data completeness is an important aspect of data quality as in many
scenarios, it is crucial to guarantee completeness of query answers. We
develop techniques to conclude the completeness of query answers from
information about the completeness of parts of a generally incomplete
database. In our framework, completeness of a database can be described
in two ways: by table completeness (TC) statements that describe the
completeness of parts of relations, and query completeness (QC) state-
ments that describe the completeness of query answers. We show for
conjunctive queries without comparisons that the problem of table com-
pleteness entailing query completeness (TC-QC) can be reduced to the
TC-TC entailment problem. We also show that the latter is equivalent
to query containment, thus making algorithms developed for this prob-
lem available for managing data completeness. For the related problem
of QC-QC entailment, we discuss its connection to query determinacy.
Furthermore, we show that additional completeness inferences are possi-
ble in the presence of finite domain constraints or if the concrete state of
a database is taken into account. In both cases, however, completeness
reasoning becomes computationally harder.

1 Introduction

Incompleteness is a ubiquitous problem in practical data management. Since the
very beginning, relational databases have been designed so that they are able to
store incomplete data [Cod75]. The theoretical foundations for representing and
querying incomplete information were laid by Imielinski and Lipski [IL84] who
captured earlier work on Codd-, c- and v-tables with their conditional tables
and introduced the notion of representation system. Later work on incomplete
information, in particular in the context of information integration, has focussed
on the concepts of certain and possible answers, which formalize the facts that
certainly hold and that possibly hold over incomplete data [AKG87, Len02,
FKMP02].

Data quality investigates how well data serves its purpose. Traditionally,
aspects of data quality concern accuracy, consistency, correctness and similar
issues. With growing amounts of data, also completeness is becoming a more
and more important aspect. However so far, most emphasis is put on statistical
methods [NFL04, BNQ06].

As an example where data completeness plays a crucial role, we discuss a
problem arising in the management of school data in the province of South Tyrol
(Italy), which motivated the technical work reported here. The IT department
of the provincial school administration runs a distributed database for stor-
ing school data. The database contains information about student enrolments,
classes, teachers, etc. This data is inserted and maintained in a decentralized
manner, as each school is responsible for its own data. Because there are many
schools in South Tyrol, the overall database is notoriously incomplete. How-
ever, periodically the statistics department of the province queries the school
database to generating statistical reports. These statistics are the basis for im-
portant administrative decisions such as the opening and closing of classes, the
assignment of teachers to schools and others. It is therefore important that these
statistics are correct. Therefore, the IT department is interested in finding out

3

which data has to be complete in order to guarantee correctness of the statistics,
and how business processes have to be organized such that these guarantees can
be provided.

The problem described above gives rise to several research questions:

• How can one describe completeness of parts of a possibly incomplete
database?

• How can one characterize the completeness of query answers?

• How can one infer completeness of query answers from such completeness
descriptions?

Reasoning about data completeness has been investigated by
Motro [Mot89] and Halevy [Lev96]. Motro describes how knowledge about the
completeness of some query answers can allow one to conclude that other query
answers are complete as well. Halevy tries to answer under which circumstances
completeness of parts of database relations allows one to conclude that some
query answer is complete. Both papers introduce important concepts, how-
ever, they do not set up a framework in which it is possible to give satisfactory
answers to the questions above.

We proceed as follows. In Section 2, we discuss related work on reasoning
about completeness in partially incomplete databases. In Section 3, we formalize
partially complete databases and statements that allow to describe partial com-
pleteness. In Section 4, we define the completeness inference tasks and develop
reasoning techniques for them. In Section 5 we show how the practically impor-
tant concept of finite domains influences completeness reasoning. In Section 6,
we discuss reasoning that takes into account a concrete database instance. In
Section 7, we analyse principles for giving completeness statements in practice.
Section 8 summarizes our work and outlines open questions.

2 Related Work

Amihai Motro [Mot89] investigated query completeness as an aspect of query
integrity, under which he subsumed both completeness and correctness. A par-
tially incorrect and incomplete database is a database that may contain both
facts that do not hold in the real world, and miss facts that hold in the real world.
He described integrity of parts of the database in terms of query completeness
(QC) or query correctness. The inference was such that some query could be
derived to be correct or complete, respectively, if it could be rewritten as a
conjunctive query using correct or complete queries. This inference is algorith-
mically correct but incomplete, i.e., the condition of conjunctive rewritability is
a sufficient but not a necessary condition for integrity inference.

Alon Halevy introduced a different formalism for stating completeness of
parts of a generally incomplete database, namely that of local completeness
statements [Lev96], which, for a better distinction from the QC statements, we
call table completeness (TC) statements. TC statements allow the assertion of
completeness of parts of relations independently of the completeness of other
relations. They are distinct from the query completeness statements introduced
by Motro, i.e., the two concepts can not generally be reduced to each other.

4

The main question Halevy’s work investigates is how to decide whether ta-
ble completeness entails query completeness (TC-QC entailment). He proposed
a reduction to the problem of Queries Independent of Updates (QIU) [Elk90,
LS93]. He observed that a query is complete with respect to a set of TC state-
ments exactly if the query is independent from database updates on parts that
are not stated to be complete. That is, the query is complete if its result only
depends on parts stated to be complete.

A second contribution of Halevy’s work was the idea of deciding query com-
pleteness with respect to a concrete database instance. Using an interplay be-
tween information from a concrete database instance and functional dependen-
cies, he showed how additional completeness statements may be derived in the
presence of a concrete database instance.

The main shortcoming of Halevy’s work is that his reduction of TC-QC
problems leads to QIU problems for which no general decision procedures are
known. The reduction introduces negation symbols into the table completeness
statements which make solving the QIU problem difficult. For QIU, reductions
to query containment exist. But containment of queries containing negation is
decidable only in restricted cases. So with the reduction of TC-QC to QIU,
only for some trivial problems in TC-QC the corresponding QIU problems are
known to be decidable. Those trivial TC-QC problems are problems where
either the query contains no projections, or the table completeness statements
contain only selfjoins. For the other TC-QC problems, decidability remained
unknown.

Etzioni et al. [EGW97] discussed completeness statements in the context
of planning and presented an algorithm for querying partially complete data.
Doherty et al. [DLS00] generalized this approach and presented a sound and
complete query procedure. Furthermore, they showed that for a particular class
of completeness statements, expressed using semi-Horn formulas, querying can
be done efficiently in PTIME w.r.t. data complexity.

Recently, Denecker et al.[DCCBA10] studied how to compute possible and
certain answers over a database instance that is partially complete. They showed
that for first-order TC statements and queries, the data complexity of TC-QC
entailment wrt. a database instance is in coNP and coNP-hard for some TC
statements and queries. Then they focused on approximations for certain and
possible answers and proved that under certain conditions their approximations
are exact.

Fan and Geerts [FG09, FG10] discussed the problem of query completeness
in the presence of master data. In this setting, at least two databases ex-
ist: one master database that contains complete information in its tables, and
other, possibly incomplete periphery databases that must satisfy certain inclu-
sion constraints wrt. the master data. The inclusion dependencies set upper
bounds for the possible query answers over the periphery databases. So, if one
detects that a query over a periphery database contains already all tuples that
are maximally possible due to the inclusion dependencies, one concludes that
the query is complete.

Abiteboul et al. [ASV06] discussed representation and querying of incom-
plete semistructured data. They showed that the problem of deciding query
completeness from stored complete query answers, which corresponds to the
QC-QC problem raised in [Mot89] for relational data, can be solved in PTIME
w.r.t. data complexity.

5

3 Formalization

3.1 Standard Definitions

We assume a fixed set of relation symbols Σ, and an infinite set of constants
dom. A database instance I is a finite set of ground atoms with relation symbols
from Σ and arguments from dom. For a relation symbol R ∈ Σ we write R(I)
to denote the interpretation of R in I, that is, the set of atoms in I with relation
symbol R.

A condition is a set of atoms using relations from Σ and possibly the com-
parison predicates < and ≤. As common, we write a condition as a sequence of
atoms, separated by commas. A condition is safe if each of its variables occurs
in a relational atom. A conjunctive query is written in the form Q(x̄) :−B(x̄, ȳ),
where B is a safe condition. We often refer to the entire query by the symbol
Q. As usual, we call Q(x̄) the head, B(x̄, ȳ) the body, the variables in the vector
x̄ the distinguished variables, and the variables in the vector ȳ the nondistin-
guished variables of Q. If B contains no comparisons, then Q is a relational
conjunctive query.

The result of evaluating a query Q over a database instance I is denoted
as Q(I). Containment and equivalence of queries are defined as usual. A con-
junctive query is minimal if no relational atom can be removed from its body
without leading to a non-equivalent query.

3.2 Running Example

For our examples throughout the paper, we will use a drastically simplified
extract taken from the schema of the South Tyrol school database, containing
the following four tables:

- student(name, level, code),

- person(name, gender).

- language attendance(name, language).

- class(level, code, primary language).

The table student contains records about students, that is, their names and
the class level and code they are in. The table person contains records about
persons (e.g., students, teachers, etc.), that is, their names and genders. The
table language attendance describes who is attending courses in which language.
The table class contains classes described by level and code together with the
primary language of that class (which in South Tyrol can be German, Italian
or Ladin).

3.3 Completeness

The first and very basic concept is that of a partially complete database, which
we also call a partial database. A database can only be incomplete with respect
to another database that is considered to be complete. So we model a partial
database as a pair of database instances: one instance that describes the com-
plete state, and another instance that describes the actual, possibly incomplete
state.

6

Formally, a partial database instance is a pair D = (Ď, D̂) of two database
instances Ď and D̂ such that Ď ⊆ D̂. We call Ď (read “D check”) the available
database instance, and D̂ (read “D hat”) the ideal database instance. The re-
quirement that Ď is included in D̂ formalizes the intuition that the real database
contains no more information than the ideal one.

Example 1. Consider a partial database instance DS for a school with two
students, John and Mary, and one teacher, Bob. The ideal database instance is

D̂S = { student(John, 3 ,A), student(Mary , 5 ,C),

person(John,male), person(Mary , female),

person(Bob,male) }.

Suppose that in the available database the information is missing that Mary
is a student and that Bob is a person. The available database, with missing
information crossed out, is then

ĎS = { student(John, 3 ,A),
((((((((((
student(Mary , 5 ,C),

person(John,male), person(Mary , female),

(((((((((
person(Bob,male) }.

Next, we define the statements that we use to express that parts of the infor-
mation in Ď are complete with regard to the ideal database D̂. We distinguish
two kinds of statements, query completeness and table completeness statements.

For a query Q, we use the query completeness statement
Compl(Q) to express that Q can be answered completely over the available
database. Formally, Compl(Q) is satisfied by a partial database instance D,
denoted as D |= Compl(Q), if Q(Ď) = Q(D̂).

Example 2. Consider the above defined partial database DS .
Consider a query

Q1(n) :− student(n, l, c), person(n, ’male’)

asking for all male students. This query will return the same result over the
available database ĎS and the ideal database D̂S , namely it always returns John
only. Thus, we can say that DS satisfies the query completeness statement for
the query Q1, that is,

DS |= Compl(Q1).

A table completeness statement allows one to express that a certain part
of relation R is complete, without requiring completeness of other parts of the
database. It has two components, the relation R and a condition G. Intuitively,
it says that all tuples of the ideal relation R that satisfy condition G in the ideal
database are already present in the available relation R.

Formally, let R(x̄) be an R-atom whose arguments are distinct variables
and let G be a condition such that R(x̄), G is safe. We remark that G can
contain relational and built-in atoms and that we do not make any safety as-
sumptions about G alone. Then Compl(R(x̄);G) is a table completeness state-
ment. It has an associated query, which is defined as QR(x̄);G(x̄) :−R(x̄), G.

7

The statement is satisfied by a partial database D, written
D |= Compl(R(x̄);G), if QR(x̄);G(D̂) ⊆ R(Ď). Note that the ideal instance

D̂ is used to determine those tuples in the ideal version R(D̂) that satisfy G
and that the statement is satisfied if these tuples are present in the available
version R(Ď).

Later on, we will denote a table completeness statement generically as C
and refer to the associated query simply as QC .

Example 3. Consider again the partial database DS defined
above. There, we can observe that in the table person, only the teacher Bob is
missing, thus it contains all students. We can say that the relation person is
complete for all students. The table student still contains John, who is the only
male student, thus, we can say that the relation student is complete for all male
persons. Formally, this two observations can be written as table completeness
statements

C1 = Compl(person(n, g); student(n, l, c)),

C2 = Compl(student(n, l, c); person(n, ’male’)),

which are then satisfied by the partial database DS .

One may wonder whether table completeness can be expressed by query
completeness. To show that this is not the case we go back to our example.

Example 4. Consider the table completeness statement C1 that states that
the relation person is complete for all students. The corresponding query QC1

that asks for all persons that are students is

QC1
(n, g) :− person(n, g), student(n, l, c).

Evaluating QC1 over D̂S the result is { John,Mary }. However, evaluating it
over ĎS the result contains only John. Thus, DS does not satisfy the query
completeness for the query QC1

although it satisfies the table completeness
statement C1.

Consider a query Q(x̄) :−A1, . . . , An, E1, . . . , Em, with relational atoms Ai
and comparisons Ej . The canonical completeness statement for the atom Ai is
the TC statement

Ci = Compl(Ai;A1, . . . , Ai−1, Ai+1, . . . , An, E1, . . . , Em).

Intuitively, Ci states that Ď contains all the instances of Ai that contribute
to an answer to Q over D̂. We call CQ = {C1, . . . , Cn } the set of canonical
completeness statements for Q.

Example 5. Consider the query

Q2(n) :− student(n, l, c), class(l, c, ’Ladin’)

asking for the names of all students that are in a class with Ladin as primary
language. Its canonical completeness statements are the table completeness
statements

C1 = Compl(student(n, l, c); class(l, c, ’Ladin’))

C2 = Compl(class(l, c, ′Ladin ′); student(n, l, c)).

8

4 Completeness Reasoning

In this section we discuss the general completeness reasoning tasks. Before, we
have seen the two formalism of table completeness (TC) and query completeness
(QC). We consider TC statements to be the most useful formalism for giving as-
sertions about database completeness, because they allow stating completeness
of tables independent of the completeness status of other tables. We consider
QC statements to be the most interesting kind of database completeness, i.e.,
one is usually interest whether given some completeness assertions, one can
conclude that a query result will be complete or not.

Therefore, we identify the question of when table completeness entails query
completeness (TC-QC) as the most interesting reasoning problem. We will
reduce this problem to the problem of table completeness entailing table com-
pleteness (TC-TC) which we deal with in the next section. There, we show that
the TC-TC entailment problem can be reduced to containment. We show that
both TC-QC and TC-TC are decidable whenever the union containment prob-
lem of the underlying query language is. Finally, we will discuss the problem of
QC-QC entailment and will show that the question of what necessary conditions
are is an open question in the general case.

4.1 Table Completeness Entailing Table Completeness

table completeness statements describe parts of relations, which are stated to be
complete. Hence, intuitively, a set of such statements entails another statement
if the part described by the latter is contained in the parts described by the
former.

Example 6. Consider the TC statements C1 and C2, stating that the person
table is complete for all persons and for all female persons, respectively:

C1 = Compl(person(n, g); true),

C2 = Compl(person(n, g); g = ’female’).

It is obvious that C1 entails C2. Consider the associated queries QC1
and QC2

,
describing the parts that are stated to be complete, thus asking for all persons
and for all female persons, respectively:

QC1
(n, g) :− person(n, g),

QC1
(n, g) :− person(n, g), g = ’female’ .

Clearly, QC2 is contained in QC1 . In summary, we can say that C1 entails C2

because QC2 is contained in QC1 .

With the next lemma we show that, in fact, TC-TC entailment can natu-
rally be reduced to query containment. We remind the reader that for a table
completeness statement C the associated query is denoted as QC . Moreover, if
C is a table completeness statement for relation R, then QC and R have the
same arity.

Lemma 7. Let C and C1, . . . , Cn be table completeness statements for a relation
R. Then

C1, . . . , Cn |= C iff QC ⊆ QC1 ∪ · · · ∪QCn .

9

Proof. “⇒” WhenQC is not contained inQC1
∪· · ·∪QCn

, there exists a database
instance I such that there is a tuple t in QC(I) that is not in QC1

∪ · · · ∪QCn
.

We construct from I a partial database instance D = (I \ {R(t) }, I) where
ideal and available database are exactly the same except that R(t) is not in the
available database. As t is not in QC1

∪ · · · ∪QCn
, we conclude that C1, . . . , Cn

hold on this partial database instance, whereas C does not.

“⇐” Let QC ⊆ QC1
∪ · · · ∪ QCn

and let D be a partial database instance
satisfying C1, . . . , Cn. We show that D satisfies C as well. Let t be a tuple in
QC(D̂). We show that t is also in R(Ď).

As QC is contained in QC1 ∪ · · · ∪QCn , the tuple t is also in QC1(D̂)∪ · · · ∪
QCn

(D̂). Suppose, wlog, that t ∈ QCi
(D̂). As Ci holds in D, we have that

QCi
(D̂) ⊆ R(Ď) and thus, t is also in R(Ď).

Conversely, we can also reduce containment of unions of conjunctive queries
to TC-TC entailment. Let Q(x̄) :−B be a query and R a new relation symbol,
with the same arity as Q. The TC statement associated to Q and R is the
statement Compl(R(x̄);B), which we denote as CR,Q.

Lemma 8. Let Q, Q1, . . . , Qn be conjunctive queries, all with the same arity,
and let R be a new relation symbol, with the same arity as the queries. Then

Q ⊆ Q1 ∪ · · · ∪Qn iff CR,Q1
, . . . , CR,Qn

|= CR,Q.

Proof. “⇒” Let Q ⊆ Q1 ∪ . . . ∪ Qn. We show that in every partial database
instance D where CR,Q1

, . . . , CR,Qn
hold, also CR,Q holds. To this end we show

that whenever a tuple t is in QCR,Q
(D̂), then it is also in R(Ď).

Suppose that t ∈ QCR,Q
(D̂). Since this query is defined asQCR,Q

(x̄) :−R(x̄), B,

where B is the body of Q, it follows that t ∈ R(D̂) and that t ∈ Q(D̂). Due to
the containment, we also have t ∈ Q1(D̂) ∪ · · · ∪ Qn(D̂). Combining this with
the fact that t ∈ R(D̂), we conclude that t ∈ QR,Q1

(D̂) ∪ · · · ∪ QR,Qn
(D̂). As

CR,Q1 , . . . , CR,Qn hold in D, it follows that t ∈ R(Ď).

“⇐” Assume Q 6⊆ Q1 ∪ . . . ∪Qn. We have to show that C1, . . . , Cn 6|= C.
If Q 6⊆ Q1∪ · · ·∪Qn, then there exists a database instance I such that there

is a tuple t that is in Q(I), but not in Q1(I) ∪ . . . ∪Qn(I).
LetRI denote the set of all atoms with relation symbolR where the argument

is in Q(I) ∪ Q1(I) ∪ . . . ∪ Qn(I). We construct a partial database instance
D = (Ď, D̂) out of I, where D̂ = I ∪ RI and Ď = I ∪ RI \ {R(t) }. That is,
both the ideal and the available database contain I, plus all R-atoms for tuples
that are in the answer of one of the queries over I, except that R(t) is not in Ď.

Over D, the completeness statements CR,Q1
, . . . , CR,Qn

hold because all tu-
ples that are in Q1(I)∪· · ·∪Qn(I) are also in R(Ď). However, the completeness
statement CR,Q does not hold in D because t is not in R(Ď).

Since the problems of table completeness entailment and query containment
can be reduced to each other, we conclude that both problems have the same
complexity in any query language where the reductions are possible.

Theorem 9. Let Q be a class of conjunctive queries that (i) contains for every
relation the identity query, and (ii) is closed under intersection. Then the two
problems of TC-TC entailment and containment of unions of queries have the
same complexity.

10

Proof. Follows from Lemmas 7 and 8.

4.2 Table Completeness Entailing Query Completeness

Regarding the question when table completeness entails query completeness, a
first observation is that under certain conditions, completeness of a query can
exactly be characterized by its canonical table completeness statements.

Theorem 10. Let Q be a conjunctive query. Then for all partial database
instances D,

D |= Compl(Q) iff D |= CQ,

provided one of the conditions below holds:

1. Q is evaluated under multiset semantics, or

2. Q is a projection-free query.

Proof. 1. “⇒” Indirect proof: Suppose, one of the completeness assertions in
CQ does not hold over D, for instance, assertion C1 for atom A1. Suppose, R1 is
the relation symbol of A1. Let C1 stand for the TC statement Compl(A1; B1)
where B1 = B \ {A1 } and B is the body of Q. Let Q1 be the query associated
to C1.

Then Q1(D̂) 6⊆ R1(Ď). Let t be a tuple that is in Q1(D̂), and therefore in
R1(D̂), but not in R1(Ď). By the fact that Q1 has the same body as Q, the
valuation υ of Q1 over D̂ that yields t is also a satisfying valuation for Q over
D̂. So we find one occurence of some tuple t′ ∈ Q(D̂), where t′ is υ applied to
the distinguished variables of Q.

However, υ does not satisfy Q over Ď because t is not in R1(Ď). By the
monotonicity of conjunctive queries, we cannot have another valuation yielding
t′ over Ď but not over D̂. Therefore, Q(Ď) contains at least one occurence of t′

less than Q(D̂), and hence Q is not complete over D.
1. “⇐” Direct proof: We have to show that if t is n times in Q(D̂) then t

is also n times in Q(Ď).
For every occurence of t in Q(D̂) we have a valuation of the variables of

Q that is satisfying over D̂. We show that if a valuation is satisfying for Q
over D̂, then it is also satisfying for Q over Ď. A valuation υ for a conjunctive
condition G is satisfying over a database instance if we find all elements of the
instantiation νG in that instance. If a valuation satisfies Q over D̂, then we will
find all instantiated atoms of νG also in Ď, because the canonical completeness
conditions hold in D by assumption. Satisfaction of the canonical completeness
conditions requires that for every satisfying valuation of υ of Q, for every atom
A in the body of Q, the instantionation atom νA is in Ď. Therefore, each
satisfying valuation for Q over D̂ yielding a result tuple t ∈ Q(D̂) is also a
satisfying valuation over Ď and hence Q is complete over D.

2. Follows from 1. Under multiset semantics, violation of a necessary com-
pleteness assertion leads to a difference of at least one occurence of some tuple
in the results over D̂ and Ď. Under set semantics, multiplicities collapse so the
query could be still complete if there existed another way to compute that tuple
in the result. However, observe, that without disjunction and projection, under
set semantics, there exists only exactly one valuation per tuple in the result.

11

From the theorem above we conclude immediately that the canonical table
completness statements of a query are sufficient conditions for the completeness
of that query.

Corollary 11. Let Q be a conjunctive query and C be a set of table completeness
statements. Then

CQ |= Compl(Q).

Proof. Instead of Q, we consider its projection-free variant Q′. Note that CQ =
CQ′ . Thus, by the preceding theorem, if D |= CQ, then D |= Compl(Q′), and

hence, Q′(Ď) = Q′(D̂). Since the answers to Q are obtained from the answers to
Q′ by projection, it follows that Q(Ď) = Q(D̂) and hence, D |= Compl(Q).

Let Q be a conjunctive query. We say that a set C of TC statements is
characterizing for Q if for all partial databases D it holds that D |= C if and
only if D |= Compl(Q). The lemma above shows that the canonical statements
CQ are characterizing under set semantics for projection free Q.

One can show that under set semantics, satisfaction of the canonical com-
pleteness statements is still a sufficient but not necessary condition for query
completeness. One may wonder whether this means that no set of TC state-
ments is characterizing. In fact this is what the next theorem shows.

Theorem 12. Let Q be a conjunctive query where at least one variable in
the body is not a distinguished variable. Then no set of table completeness
statements exists that is characterizing for Q.

Proof. We show the nonexistence of a characterizing set of table completeness
statements for a simple query first, and describe afterwards, how this proof
extends to arbitrary queries.

Consider the relation schema Σ = {R/1 } and the boolean queryQ() :−R(x).
Furthermore, assume a characterizing set of table completeness conditions C for
Q existed. Now consider the partial database instances D1, D2 and D3 such
that:

D̂1 = {R(a), R(b) } Ď1 = {R(a) }
D̂2 = {R(a), R(b) } Ď2 = {R(b) }
D̂3 = {R(a), R(b) } Ď3 = { }.

Then, Compl(Q) holds in D1 and D2 but not in D3, and therefore all table
completeness conditions in C have to hold in D1 and D2, but at least one of
them must not hold in D3. Let us call that condition C.

The statement C must be of the form Compl(R(x), G). Then G = true does
not hold in D1 and D2 (because in both cases there is a tuple in R̂ that is not
in Ř). Other relation symbols to introduce do not exist and repeating R with
a variable generates only equivalent conditions. Adding an equality atom for
x with some constant generates a table completeness statement that does not
hold either in D1 or D2. So the only form G can have such that Compl(R(x), G)
holds in D1 and D2 is G = false. However, Compl(R(x), false) holds in D3 as
well.

The proof for this specific query can be extended to any query with pro-
jection. The idea is the same, one constructs three partial database instances,

12

where the ideal database instances contain the frozen body of the query plus an
isomorphic structure differing only in a nondistinguished variable’s name. The
three available database instances are once the frozen body, once the isomorphic
structure differing in a nondistinguished variable’s name, and once the empty
set. If the completeness statements cannot detect that in the first two instances
once the frozen body and once the isomorphic structure is missing, they will not
detect that in the third instance both are missing. But over the third instance,
the query is clearly incomplete.

Since in general characterizing sets of TC statements do not exist for a
conjunctive query Q, we cannot replace the statement Compl(Q) by a set of TC
statements for arbitrary reasoning tasks. However, as the next theorem shows,
the set of canonical TC statements CQ can replace Compl(Q) when checking
TC-QC entailment, provided Q is a minimal relational query.

Theorem 13. Let Q be a minimal relational conjunctive query and C be a set
of table completeness statements. Then

C |= Compl(Q) implies C |= CQ

Proof. Observe first that the theorem holds trivially for unsatisfiable queries, as
the table completeness queries of the canonical completeness statements of un-
satisfiable queries are unsatisfiable as well, and therefore the set CQ of canonical
completeness statements holds in any partial database.

The proof is by contradiction. Assume Q is minimal and C is such that
C |= Compl(Q), but C 6|= CQ. Then, because C 6|= CQ, there exists some partial
database D such that D |= C, but D 6|= CQ. Since D 6|= CQ, we find that
D violates some canonical completeness statement in CQ. Let B be the body
of Q. Wlog, assume that D 6|= C1, where C1 is the canoncial statement for
A1 = R1(t̄1), the first atom in B. Let QC1

be the query associated to C1. Thus,
there exists some tuple ū1 such that ū1 ∈ QC1

(D̂), but ū1 6∈ R1(Ď).
Now we construct a second partial database D0. As Q is satisfiable, there

exist satisfying valuations for its body B. As the domain of our constants is
dense, we can pick a valuation that we call σ, where each variable in B that is not
restricted to a certain constant, is mapped to a constant that does not appear
in B nor another variable is mapped to by σ. Let B′ be σB and A′1 = R(σt̄1).
Now, we define D0 = (B′, B′ \ {A′1 }).

Claim: D0 satisfies C as well

To prove the claim, we note that the only difference between D̂0 and Ď0 is that
A′1 /∈ Ď0, therefore all TC statements in C that describe table completeness of
relations other than R1 are satisfied immediately. To show that D0 satisfies
also all statements in C that describe table completeness of R1, we assume the
contrary and show that this leads to a contradiction.

AssumeD0 does not satisfy some statement C ∈ C. ThenQC(D̂0)\R1(Ď0) 6=
∅, where QC(x̄C) is the query associated with C. Since QC(D̂0) ⊆ R1(D̂0), it
must be the case that t̄′1 ∈ QC(D̂0) \ R1(Ď0). Let BC be the body of QC .
Then, t̄′1 ∈ QC(D̂0) implies that there is a valuation δ such that δBC ⊆ B′ and
δx̄C = t̄′1, where x̄C are the distinguished variables of C. As ū1 ∈ QC1

(D̂), and
QC1 has the same body as Q, there exists another valuation θ such that θB ⊆ D̂
and θt̄1 = ū1, where t̄1 are the arguments of the atom A1.

13

Composing θ and δ, while ignoring the difference between B and its frozen
version B′, we find that θδBC ⊆ θB′ = θB ⊆ D̂ and θδx̄C = θt̄′1 = θt̄1 = ū1. In
other words, θδ is a satisfying valuation for QC over D̂ and thus ū1 = θδx̄C ∈
QC(D̂). However, ū1 /∈ R1(Ď), hence, D would not satisfy C. This contradicts
our initial assumption. Hence, we conclude that also D0 satisfies C.

Since D0 satisfies C and C |= Compl(Q), it follows that Q is complete over
D0. As D̂0 = B′, the frozen body of Q, we find that x̄′ ∈ Q̂(D0), with x̄′ being
the frozen version of the distinguished variables x̄ of Q. As Q is complete over
D0, we should also have that x̄′ ∈ Q(Ď0). However, as D̂0 = B′ \ {A′1 }, this
would require a satisfying valuation from B to B′ \ {A′1 } that maps x̄ to x̄′.
This valuation would correspond to a non-surjective homomorphism from Q to
Q and hence Q would not be minimal.

With the next example, we show that query minimality is really a necessary
condition for the theorem given above to hold.

Example 14. Consider Q(x) :−R(x, x), R(x, y), which is not
minimal, because there exists a homomorphism, mapping y to x, allowing
one to drop the second literal. Its set of canonical completeness statements
is CQ = {C1, C2 }, where

C1 = Compl(R(x, x); R(x, y))

C2 = Compl(R(x, y); R(x, x)).

Statement C1 is satisfied by a partial database (D̂, Ď) if Ď contains all atoms
R(a, a) ∈ D̂ for which there is some matching atom R(a, b) ∈ D̂, which is
equivalent to the condition that Ď contain all atoms R(a, a) ∈ D̂. Statement
C2 is satisfied by (D̂, Ď) if Ď contains all atoms R(a, b) ∈ D̂ for which there is
a matching symmetric atom R(a, a) ∈ D̂. Clearly, C2 entails C1, but C1 does
not entail C2.

However, Q is complete already whenever C1 holds. This follows from the
fact that whenever we have a symmetric tuple that satisfies the first literal in Q,
the same tuple satisfies also the second literal without influencing on the query
result. Thus, with C = {C1 } we have that C |= Compl(Q), but C 6|= CQ.

Table 1 gives an overview over the complexity of TC-TC entailment with
respect to different languages used for entailing and entailed TC statements.
The complexity results shown there follow from Theorem 9 about the equiva-
lence of query containment and TC-TC entailment. Query containment can be
characterized by the existence of query homomorphisms. The table shows both
the hardness and the tractability for different classes of TC statements.

As long as the containee queries contain no repeated relation symbols, the
containment problems are in coNP because there is no nondeterminism in con-
structing query homomorphisms (each atom in the container queries can only be
mapped to exactly one atom in the containee query). To show that containment
does not hold, it suffices to guess one linearisation of the containee query for
which the containment does not hold, and show that no query homomorphism
exists, which then can be done in PTIME. The coNP-hardness can be shown by
a reduction of propositional validity, a result that, to the best of our knowledge,
has not appeared in the literature so far.

14

As long as the container queries contain no comparisons, the containment
problems are in NP because containment of some query in a union of queries
without comparisons holds exactly if the query is contained in one of those
queries [SY78].

Results about the complexity of containment for queries containing compar-
isons can be found in [vdM92].

Language 2

CQs w/o rep. CQs, CQs w/ c.

Language 1
CQs polynomial NP-complete

CQs w/ c. coNP-complete ΠP
2 -complete

Table 1: Complexity of deciding whether a set of TC statements in language 1
entails a set of TC statements in language 2. CQs w/o rep. denotes conjunc-
tive queries without repeated relation symbols. CQs w/ c. denotes conjunctive
queries with comparisons

4.3 Query Completeness Entailing Query Completeness

To find out whether completeness of a set queries entails completeness of a given
query, Motro [Mot89] had the idea of looking for rewritings of that query using
queries known to be complete. Existence of such a rewriting entails completeness
of the query because then the answers of the given query can be computed from
the answer sets of the complete queries, which are complete.

Example 15. Consider the query Q(x) :−R(x), S(x), T (x).
Furthermore, assume that the queries Q1 and Q2 below have been asserted
to be complete:

Q1(x) :−R(x), S(x),

Q2(x) :−T (x).

Observe that Q can be rewritten in terms of Q1 and Q2 as

Q(x) :−Q1(x), Q2(x).

That is, the result of the query Q is the intersection of the results of the queries
Q1 and Q2. Thus, completeness of Q1 and Q2 entails completeness of Q.

A problem closely related to the existence of rewritings is the one of query
determinacy, which had not yet been introduced at the time of Motro’s work.
Formally, a query Q is determined by a set of queries Q, written Q →→ Q, if
for any two database instances I1 and I2, we have that Q′(I1) = Q′(I2) for
all Q′ ∈ Q implies Q(I1) = Q(I2). The decidability of query determinacy for
conjunctive queries is an open question so far. But as shown by Segoufin and
Vianu [SV05], for conjunctive queries, the existence of a rewriting and query
determinacy coincide. It is clear that query determinacy is a sufficient condition
for QC-QC entailment, as expressed by the following proposition:

Proposition 16. Let Q∪ {Q } be a set of queries. Then

Compl(Q) |= Compl(Q) if Q →→ Q.

15

Proof. The definitions of query determinacy and QC-QC entailment are exactly
the same, except that query determinacy considers arbitrary database instances
I1, I2, while QC-QC entailment considers only partial databases, that is pairs
of instances (I1, I2) where I1 ⊇ I2.

Whether the existence of a rewriting and thus query determinacy is also a
necessary condition for QC-QC entailment is not known so far. We were only
able to show this for conjunctive queries that are boolean and relational.

Theorem 17. Let Q ∪ {Q } be a set of boolean relational conjunctive queries.
Then

Q →→ Q if Compl(Q) |= Compl(Q).

Proof. Both determinacy and QC-QC entailment hold exactly if there exists a
rewriting of Q in terms of Q. The sufficiency of this condition is trivial, for
the necessity we omit details here but say that whenever Q cannot be rewritten
in terms of Q, then a counterexample of a partial database instance can be
constructed where completeness of the queries in Q holds but completeness of
Q not. This partial database instance then is also a counterexample that Q is
not determined by Q.

Whether determinacy and QC-QC entailment coincide also in the general
case, remains an open question.

5 Reasoning with Finite Domains

A question of practical interest is completeness reasoning with finite domains.
If we know that an attribute of a relation has a finite domain of possible values,
we can derive more completeness statements.

Example 18. Consider the query

Q(n, g) :− person(n, g),

asking for all persons, and the table completeness statements

C1 = Compl(person(n, g); g = ’male’),

C2 = Compl(person(n, g); g = ’female’),

which state that all male and female persons are present in the person table.
Observe first that, in general, completeness of the person table for all male

and female persons does not imply completeness of the entire table. For instance,
there could be persons with the value ’unkown’ as gender.

However, if there was a formal constraint allowing the values of the gender at-
tribute to be only ’male’ or ’female’, then C1 and C2 would entail Compl(person(n, g); true),
that is, completeness of the whole person table, and completeness of the query
Q could be derived.

As both TC-TC entailment and TC-QC entailment for relational conjunctive
queries can be reduced to query containment, a possible approach to complete-
ness reasoning with finite domains is to extend containment reasoning to finite
domains.

16

Formally, we say that a finite domain constraint is a triple F = Dom(R,A, T)
containing a relation name R, a set A of positions of R, and a finite set T of
A-tuples. A database instance I satisfies a finite domain constraint F , if the
projection on the positions A of the extension of R is contained in T , that is,
πA(R(I)) ⊆ T .

Given a set of finite domain constraints F and a set of conjunctive queries
Q∪ {Q }, we say that Q is contained in Q w.r.t. F , written

Q ⊆F Q,

if Q(I) ⊆
⋃
Q′∈QQ

′(I) for all instances I satisfying F .
In a very naive way, one can test whether finite domain containment holds

by instantiating the query Q in all possible ways using the constraints in F , and
checking for each such instantiation θQ, whether θQ is contained in the union
of the queries in Q. Clearly, the number of instantiations to consider is finite,
but exponential in the size of F . In this way we can translate one problem
“Q ⊆F Q” w.r.t. finite domain constraints into many problems “θQ ⊆ Q”
without constraints. Thus, whenever containment without constraints can be
decided in ΠP

2 , so can containment wrt finite domain constraints.
The question arises whether adding finite domain constraints increases the

difficulty of containment for classes of queries where containment is not ΠP
2 -

hard. In fact, as can be shown by a reduction of the validity problem for univer-
sally quantified 3-SAT formulae, the difficulty is raised for relational conjunctive
queries.

Theorem 19. Finite domain containment of relational conjunctive queries is
ΠP

2 -complete.

Proof. The reduction for the hardness proof is included in the appendix. The
upper bound follows from the algorithm sketched above.

6 Reasoning with Database Instances

A second question of practical interest is how to take advantage of the data in an
concrete instance for completeness reasoning. In such a situation, completeness
statements explicitly make available parts of the ideal database allow one to
derive further conclusions about table and query completeness.

Example 20. As a very simple example, consider the query

Q(n) :− student(n, l, c), language attendance(n, ’greek’),

that asks for the names of all students that attend language courses in Greek.
Suppose that the language attendance table is known to be complete. Then

this alone does not imply the completeness of Q, because records in the student
table might be missing. Now, assume we know that in the available instance
of our database, which is the one maintained by the school administration, the
table language attendance contains no records about Greek. So the result of Q
evaluated over this available database will always be empty.

As the language attendance table is asserted to be complete, it cannot have
any records about Greek in the ideal instance either. So Q evaluated over the

17

ideal database must be empty as well, and thus, Q is necessarily complete.
Without considering this concrete available database instance the conclusion
would not hold.

Formally, the question of TC-QC entailment w.r.t. a concrete database in-
stance is formulated as follows: given an available database instance Ď, a set of
table completeness statements C, and a query Q, is it the case that for all ideal
database instances D̂ such that (D̂, Ď) |= C, we have that Q(Ď) = Q(D̂)? If
this holds, we write

Ď, C |= Compl(Q).

For relational conjunctive queries and TC statements, a naive algorithm to
check whether Compl(Q) is entailed by C with respect to Ď works as follows:
First, one evaluates Q over Ď. Then, one tries to construct an ideal database
instance D̂ such that the evaluation of Q over D̂ returns a tuple that is not
returned over Ď. If this construction succeeds, then the entailment does not
hold. If such a construction is not possible, then completeness of the query Q
is entailed by C and Ď.

For constructing the test databases, it suffices to add to Ď instantiations of
the body of Q and to use for these instantiations only the constants appearing in
Ď plus a fresh constants for every variable of Q. The algorithm has a complexity
of ΠP

2 , because to show that the entailment does not hold it suffices to guess
one such instantiation of the body of Q, to add it to Ď and evaluate Q over the
extended database.

For the lower complexity bound of TC-QC entailment w.r.t. a database
instance, we found again that the problem of validity of universally quantified
3-SAT formulas can be reduced to it. The reduction is enclosed in the appendix.

Theorem 21. The problem, given a relational conjunctive
query Q, a set of relational conjunctive TC statements C, and a database in-
stance Ď, to check whether

Ď, C |= Compl(Q)

is ΠP
2 -complete.

Proof. The reduction for the hardness proof is included in the appendix. The
upper bound follows from the algorithm sketched above.

Most notably again, we observe that the problem is strictly more difficult
than TC-QC entailment without taking into account an available database in-
stance.

7 Where Completeness Statements Come From

So far we have seen how completeness statements can be derived from given com-
pleteness statements. So obviously, the correctness of the derived completeness
statements relies on the correctness of the given completeness statements. But
where can given completeness statements can come from? Why someone can
give completeness statements? Only if the incomplete database is derived from
another complete one but does not contain all the facts of the complete one e.g.,

18

for performance reasons (mirror) or authorization reasons, completeness state-
ments can be derived automatically. Otherwise, there must be other reasons to
give completeness statements. We identified three general basic principles:

1. Someone may perfectly know some part of the ideal world. Then, he/she
can manually compare whether all facts that should be in some part of the
available database are really there, and if so, state completeness of that
part. This method seems only appropriate for small data sets.

Example 22. A class teacher knows all his/her students. Having a printout
of all students stored in the database that are enrolled in his class, he/she can
manually compare whether all are there.

2. Someone may know that the method of data collection is complete. If
so, he/she can state that after the data collection has finished the data is
complete, without inspecting the data.

Example 23. Enrolment forms have to be sent or handed in to the secretariat
by the deadline of the enrolment. So by the deadline of enrolment the set of all
valid enrolment forms is complete, as any forms that are not there yet are not
valid. So one can state completeness, although no one could manually inspect
the set of enrolment forms and check whether they are complete, since hardly
anyone knows all the students that apply for enrolment.

3. Someone may know that the data is correct and know the number of tuples
that should be there in some part. He/she then can compare whether the
number of tuples that should be there matches the number of tuples that
are there. If that holds, he/she can state completeness for that part.

Example 24. Under the reasonable assumption that no one enters a nonex-
isting school into the database, whenever one knows the number of schools in
South Tyrol, e.g., from another data source, and one finds this number of schools
in the database, then one can state that the table containing all the schools is
complete. This works, although no one could manually inspect that table and
check whether any school is missing.

8 Conclusion

We outlined the importance of data completeness in the field of data quality and
illustrated the main research questions by the example of the management of
school data in the province of South Tyrol. We argued that a general approach
to database completeness management is necessary.

In this paper, we developed a framework for describing completeness of
databases and query answers, drawing upon earlier work by Motro [Mot89] and
Halevy [Lev96]. We distinguished between the table completeness (TC) state-
ments introduced by Halevy, and the query completeness (QC) statements in-
troduced by Motro. We identified three central completeness reasoning tasks, (i)
entailment of QC statements by TC statements or TC-QC entailment for short,
which is the most relevant for applications, as well as
(ii) TC-TC entailment and (iii) QC-QC entailment. For the problem of TC-TC

19

entailment, we showed the equivalence to query containment. For the problem of
TC-QC entailment for relational conjunctive queries, we presented a reduction
to the TC-TC entailment problem. This closes a crucial gap in previous work by
Halevy [Lev96]. For the problem of QC-QC entailment, we outlined the strong
connection to the open problem of deciding conjunctive query determinacy.

In addition, we showed that TC-QC entailment in the presence of a database
instance and TC-TC entailment in the presence of finite domains become harder,
and we presented the problem of query containment with respect to finite do-
mains. We identified three basic principles for giving completeness assertions.
In addition, we showed that TC-TC entailment becomes harder if one takes
into account finite domain constraints and that TC-QC entailment becomes
harder if one reasons w.r.t. a concrete database instance. We also discussed
how completeness assertions could be gathered in an organisation.

A limitation of previous work, which we have not yet addressed, is that
databases are assumed to be null free. This is the next topic that we plan to
investigate.

Acknowledgement

We are thankful to Zeno Moriggl and Martin Prosch from the school IT de-
partment of the province of South Tyrol for introducing us to their practical
problem.

References

[AKG87] S. Abiteboul, P.C. Kanellakis, and G. Grahne. On the represen-
tation and querying of sets of possible worlds. In Proc. SIGMOD,
pages 34–48, 1987.

[ASV06] S. Abiteboul, L. Segoufin, and V. Vianu. Representing and query-
ing XML with incomplete information. ACM TODS, 31(1):208–
254, 2006.

[BNQ06] J. Biswas, F. Naumann, and Q. Qiu. Assessing the completeness
of sensor data. In Proc. DASFAA, pages 717–732, 2006.

[Cod75] E. F. Codd. Understanding relations (installment #7). FDT –
Bulletin of ACM SIGMOD, 7(3):23–28, 1975.

[DCCBA10] M. Denecker, A. Cortés-Calabuig, M. Bruynooghe, and O. Arieli.
Towards a logical reconstruction of a theory for locally closed
databases. ACM TODS, 35(3), 2010.

[DLS00] P. Doherty, W. Lukaszewicz, and A. Szalas. Efficient reasoning
using the local closed-world assumption. In AIMSA, pages 49–58,
2000.

[EGW97] O. Etzioni, K. Golden, and D. S. Weld. Sound and efficient closed-
world reasoning for planning. AI, 89(1-2):113–148, 1997.

[Elk90] Ch. Elkan. Independence of logic database queries and updates.
In Proc. PODS, pages 154–160, 1990.

20

[FG09] W. Fan and F. Geerts. Relative information completeness. In
PODS, pages 97–106, 2009.

[FG10] W. Fan and F. Geerts. Capturing missing tuples and missing val-
ues. In PODS, pages 169–178, 2010.

[FKMP02] R. Fagin, Ph. Kolaitis, R. Miller, and L. Popa. Data exchange:
Semantics and query answering. In Proc. ICDT, pages 207–224,
2002.

[IL84] T. Imieliński and W. Lipski, Jr. Incomplete information in rela-
tional databases. J. ACM, 31:761–791, 1984.

[Len02] M. Lenzerini. Data integration: A theoretical perspective. In Proc.
PODS, pages 233–246, 2002.

[Lev96] A.Y. Levy. Obtaining complete answers from incomplete
databases. In Proc. VLDB, pages 402–412, 1996.

[LS93] A.Y. Levy and Y. Sagiv. Queries independent of updates. In Proc.
VLDB, pages 171–181, 1993.

[Mot89] A. Motro. Integrity = Validity + Completeness. ACM TODS,
14(4):480–502, 1989.

[NFL04] F. Naumann, J.-Chr. Freytag, and U. Leser. Completeness of in-
tegrated information sources. Inf. Syst., 29:583–615, September
2004.

[SV05] L. Segoufin and V. Vianu. Views and queries: Determinacy and
rewriting. In Proc. PODS, pages 49–60, 2005.

[SY78] Y. Sagiv and M. Yannakakis. Equivalence among relational ex-
pressions with the union and difference operation. In VLDB, pages
535–548, 1978.

[vdM92] R. van der Meyden. The complexity of querying indefinite data
about linearly ordered domains. In PODS, pages 331–345, 1992.

21

A Reduction of ∀3-SAT to Finite Domain Con-
tainment

To show the ΠP
2 -hardness of finite domain containment, we give a reduction of

the problem of deciding validity of universally quantified 3-satisfiability to finite
domain containment.

A universally quantified 3-SAT formula is a formula of the form

∀X1, . . . , Xm∃Y1, . . . , Yn : C1 ∧ . . . ∧ Ck,

where clause Ci is of the form Li1 ∨ Li2 ∨ Li3 with Li1, Li2, Li3 being literals
using propositions from X1, . . . , Xm and Y1, . . . , Yn.

Let φ be a formula of the above form. We create an instance of a finite
domain containment problem such that finite domain containment holds exactly
if φ is valid.

We use the database schema Σ = {R1/2, . . . , Rm/2, S/2,
C ′1/3, . . . C

′
k/3 }. For a clause Ci with literals Li1, Li2 and Li3 in φ, we define

conjunctive conditions

Gi = Ri(a,Wi), Ri(Wi, b), S(Wi, 0), S(b, 1)

G′i = Ri(a, b), S(b,Xi).

Furthermore, the set C
′(7)
i denotes the set of the 7 ground instances of pred-

icate C ′i over the domain { 0, 1 }, such that constant 1 at position j in C ′i cor-
responds to the variable Zij being mapped to true, and the 7 ground instances
are the ones where Ci evaluates to true under the variable mapping.

Let F be the finite domain constraint with

F = Dom(S, 1, {a, b}).

Let Q1 and Q2 be the following queries:

Q1() :−G1, . . . , Gm, C
′(7)
1 , . . . , C

′(7)
k

Q2() :−G′1, . . . , G′m, C ′1, . . . , C ′k

Lemma 25. Let φ be a ∀3-SAT formula as shown above and let Q1, Q2 and F
be constructed as above. Then

φ is valid exactly if Q1 ⊆F Q2.

Proof. For containment to hold, both each conjunctive condition C ′i has to be

contained in the conjunctive condition C
(7)
i , and the conjunctive condition G′j

in the conjunctive conditions Gj .
The key of that containment is that the variables Wi in Gi are not restricted

further than to have the constant values a or b. The value of Wi determines
which value Xi has, thus, Xi can be both 0 or 1. Thus, the indeterminacy of
Wi leads to containment having to hold both in the case of Xi being 0 or 1,
representing the universal quantification of the X variables in φ.

The remaining part of the containment problem is standard, for every possi-
ble assignment of the X variables, there must exist a valuation of the Y variables

22

such that each C ′ clause becomes a ground instance for which the clause eval-
uates to true.

The reduction is correct, because whenever containment holds, an assign-
ment for the Y variables for each combination of X variables has to exist that
enables the containment of the C ′ in the C(7). It is complete because whenever
φ is valid, for every combination of the X variables, some combination of the Y
variables has to exist that makes all the clauses true.

Figure 1: Structure of Gi and G′i. Depending on the value assigned to W , Xi

becomes either 0 or 1.

B Reduction of ∀3-SAT to TC-QC Entailment
w.r.t. a Concrete Database Instance

To show the ΠP
2 -hardness of TC-QC entailment w.r.t. a concrete database in-

stance, we give a reduction of the same problem as in the previous chapter,
validity of universally quantified 3-satisfiability.

So consider φ to be an universally quantified 3-SAT formula of the form

∀X1, . . . , Xm∃Y1, . . . , Yn : C1 ∧ . . . ∧ Ck.

We define the query completeness problem

Γφ = (Ď, {C }
?

|= Compl(Q))

as follows. Let the relation schema Σ be {B/1, R1/1, . . . ,
Rm/1, C

′
1/3, . . . , C

′
k/3 }. Let Q be a query defined as

Q() :−B(X1), R1(X1), . . . , B(Xm), Rm(Xm).

Let Ď be such that B(Ď) = { 0, 1 }, and for all i = 1, . . . ,m let Ri(Ď) = {}
and let C ′i(Ď) contain all the 7 triples over { 0, 1 } such that Ci becomes true
when the variables in Ci become the truth values assigned that correspond to
0 and 1.

Let C be the the set containing the following TC statements

Compl(B(x), true)

Compl(R1(X1);R2(X2), . . . , Rm(Xm),

C ′1(Z̄1), . . . , C ′k(Z̄k)),

23

where the Z̄i are 3-tuples of variables in {X1, . . . , Xm } ∪
{Y1, . . . , Yn } as in φ.

Lemma 26. Let φ be a ∀3-SAT formula as shown above and let Q, C and Ď
be constructed as above. Then

φ is valid iff Ď, {C } |= Compl(Q).

Proof. Observe first, that validity of φ implies that for every possible combina-
tion of the X variables, there exist Y variables such that C1 to Ck in C evaluate
to true.

Completeness of Q follows from C and Ď, if Q returns the same result over
Ď and any ideal database instance D̂ that subsumes Ď and C holds over (D̂, Ď).

Q returns nothing over Ď. To make Q return the empty tuple over D̂, one
value from { 0, 1 } has to be inserted into each ideal relation instance R̂i, because
every predicate Ri appears in Q, and every extension is empty in Ď. This step
of adding any value from { 0, 1 } to the extensions of the R-predicates in D̂
corresponds to the universal quantification of the variables X.

Now observe, that for the query to be complete, none of these combinations
of addings may be allowed. That is, every such adding has to violate the table
completeness constraint C. As the extension of R1 is empty in Ď as well, C
becomes violated whenever adding the values for the R-predicates leads to the
existence of a satisfying valuation of the body of C. For the existence of a
satisfying valuation, the mapping of the variables Y is not restricted, which
corresponds to the existential quantification of the Y -variables.

The reduction is correct, because whenever C, Ď |= Compl(Q) holds, for all
possible addings of { 0, 1 } values to the extensions of the R-predicates in D̂ (all
combinations of X), there existed a valuation of the Y -variables which yielded
a mapping from the C-atoms in C to the ground atoms of C in Ď, that satisfied
the existential quantified formula in φ.

It is complete, because whenever φ is valid, then for all valuations of the X-
variables, there exists an valuation for the Y -variables that satisfies the formula
φ, and hence for all such extensions of the R-predicates in D̂, the same valuation
satisfied the body of C0, thus disallowing the extension.

24

